Part Number Hot Search : 
R2020 T54FCT 2SK3731 2SK184 LC89901V 265D4 00144 10EZ27
Product Description
Full Text Search
 

To Download TDA756606 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TDA7566
4x40W multifunction quad power amplifier with built-in diagnostics features
Features

DMOS power output High output power capability 4x25W/4 @ 14.4V, 1KHZ, 10% THD, 4x40W max. power Max. output power 4x60W/2 Full I2C bus driving: - St-by - Independent front/rear soft play/mute - Selectable gain 26dB - 12dB - I2C bus digital diagnostics Full fault protection DC offset detection Four independent short circuit protection Clipping detector (1%/10%) ESD protection Thanks to the DMOS output stage the TDA7566 has a very low distortion allowing a clear powerful sound. This device is equipped with a full diagnostics array that communicates the status of each speaker through the I2C bus. The possibility to control the configuration and behaviour of the device by means of the I2C bus makes TDA7566 a very flexible machine.
Flexiwatt 25

Description
The TDA7566 is a new BCD technology QUAD BRIDGE type of car radio amplifier in Flexiwatt25 package specially intended for car radio applications.
Order codes
Part number TDA7566 Package Flexiwatt 25 Packing Tube
December 2006
Rev 3
1/28
www.st.com 1
Contents
TDA7566
Contents
1 Block diagram and application & test circuit . . . . . . . . . . . . . . . . . . . . . 5
1.1 1.2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Application and test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 3
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 3.2 3.3 3.4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4
Diagnostics functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1 4.2 4.3 4.4 4.5 4.6 4.7 Turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Permanent diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Output DC offset detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 AC diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Multiple faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Faults availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 I2C Programming/reading sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5
I2C Bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1 5.2 5.3 5.4 Data Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Start and Stop Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Byte Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6 7 8 9
Software specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Examples of bytes sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Package informations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2/28
TDA7566
List of tables
List of tables
Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Double Fault Table for Turn On Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Chip Address: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 IB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 IB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 DB3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 DB4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3/28
List of figures
TDA7566
List of figures
Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Application and test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Quiescent current vs. Supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Output power vs. supply voltage (4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Output power vs. supply voltage (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Distortion vs. output power (4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Distortion vs. output power (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Distortion vs. frequency (4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Distortion vs. frequency (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Crosstalk vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Supply voltage rejection vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Power Dissipation & Efficiency vs. Output Power (4W, SINE) . . . . . . . . . . . . . . . . . . . . . . 11 Power Dissipation vs. Average Ouput Power (Audio Program Simulation, 4W). . . . . . . . . 11 Power Dissipation vs. Average Ouput Power (Audio Program Simulation, 2W). . . . . . . . . 11 Turn - On diagnostic: working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 SVR and Output behaviour (CASE 1: without turn-on diagnostic) . . . . . . . . . . . . . . . . . . . 13 SVR and Output pin behaviour (CASE 2: with turn-on diagnostic) . . . . . . . . . . . . . . . . . . . 13 Thresholds for SHORT TO GND/VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Thresholds for SHORT ACROSS THE SPEAKER/OPEN SPEAKER . . . . . . . . . . . . . . . . 14 Thresholds for Line-Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Restart timing without Diagnostic Enable (Permanent) . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Restart timing with Diagnostic Enable (Permanent) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Current detection: Load impedance magnitude |Z| Vs. output peak voltage of the sinus. . 16 Data Validity on the I2C BUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Timing diagram on the I2C Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Timing acknowledge clock pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Flexiwatt25 Mechanical Data & Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4/28
TDA7566
Block diagram and application & test circuit
1
1.1
Block diagram and application & test circuit
Block diagram
Figure 1. Block diagram
CLK DATA VCC1 VCC2 CD_OUT
REFERENCE
THERMAL PROTECTION & DUMP
I2C BUS MUTE1 MUTE2
CLIP DETECTOR
IN RF
F OUT RF+ 12/26dB OUT RFR SHORT CIRCUIT PROTECTION & DIAGNOSTIC OUT RR+ 12/26dB OUT RRF SHORT CIRCUIT PROTECTION & DIAGNOSTIC OUT LF+ 12/26dB OUT LFR SHORT CIRCUIT PROTECTION & DIAGNOSTIC OUT LR+ 12/26dB OUT LRSHORT CIRCUIT PROTECTION & DIAGNOSTIC SVR
D00AU1229
IN RR
IN LF
IN LR
AC_GND
RF
RR
LF
LR
TAB PW_GND
S_GND
1.2
Application and test circuit
Figure 2. Application and test circuit
C8 0.1F C7 3300F Vcc1 6 DATA I2C BUS CLK C1 0.22F IN RF C2 0.22F IN RR C3 0.22F IN LF C4 0.22F IN LR S-GND 12 11 14 15 22 25 Vcc2 20 17 18 19 21 24 23 9 8 7 5 2 3 TAB + OUT LR + OUT LF + OUT RR + OUT RF
13
16
10
4
1
47K C5 1F C6 10F CD OUT V
D00AU1212
5/28
Pin description
TDA7566
2
Pin description
Figure 3. Pin connection (top view)
25 24 23 22 DATA PW_GND RR OUT RRCK OUT RR+ 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 VCC2 OUT RFPW_GND RF OUT RF+ AC GND IN RF IN RR S GND IN LR IN LF SVR OUT LF+ PW_GND LF OUT LFVCC1 OUT LR+ 4 3 2 1 CD-OUT OUT LRPW_GND LR TAB
D99AU1037
6/28
TDA7566
Electrical specifications
3
3.1
Electrical specifications
Absolute maximum ratings
Table 1.
Symbol Vop VS Vpeak VCK VDATA IO IO Ptot Tstg, Tj
Absolute maximum ratings
Parameter Operating Supply Voltage DC Supply Voltage Peak Supply Voltage (for t = 50ms) CK pin Voltage Data Pin Voltage Output Peak Current (not repetitive t = 100s) Output Peak Current (repetitive f > 10Hz) Power Dissipation Tcase = 70C Storage and Junction Temperature Value 18 28 50 6 6 8 6 85 -55 to 150 Unit V V V V V A A W C
3.2
Thermal data
Table 2.
Symbol Rth j-case
Thermal data
Description Thermal Resistance Junction-case Max. Value 1 Unit C/W
3.3
Table 3.
Electrical characteristics
Electrical characteristics (Refer to the test circuit, VS = 14.4V; RL = 4; f = 1KHz; GV = 26dB; Tamb = 25C; unless otherwise specified.)
Parameter Test Condition Min. Typ. Max. Unit
Symbol POWER AMPLIFIER VS Id
Supply Voltage Range Total Quiescent Drain Current Max. (VS = 14.4V) THD = 10% THD = 1%
8 150 35 22 16 50 32 25 55 40 25 20 55 38 30 60
18 300
V mA W W W W W W W
PO
Output Power
RL = 2; EIAJ (VS = 13.7V) RL = 2; THD 10% RL = 2; THD 1% RL = 2; MAX POWER
7/28
Electrical specifications Table 3.
TDA7566
Electrical characteristics (continued) (Refer to the test circuit, VS = 14.4V; RL = 4; f = 1KHz; GV = 26dB; Tamb = 25C; unless otherwise specified.)
Parameter Test Condition PO = 1W to 10W; Min. Typ. 0.04 0.02 50 60 25 -1 60 100 26 0 12 Rg = 600; 20Hz to 22kHz Rg = 600; GV = 12dB; 20Hz to 22kHz f = 100Hz to 10kHz; Vr = 1Vpk; Rg = 600 50 100 90 110 25 80 Mute & Play -100 7 D2/D1 (IB1) 0 to 1 D2/D1 (IB1) 1 to 0 CD off CD on; ICD = 1mA D0 (IB1) = 0 0 5 1 10 100 0 7.5 20 20 0 100 8 50 50 15 300 2 15 100 35 12 60 100 130 27 1 Max. 0.1 0.05 Unit % % dB K dB dB dB V V dB KHz dB A dB mV V ms ms A mV % %
Symbol
THD
Total Harmonic Distortion
GV = 12dB; VO = 0.1 to 5VRMS f = 1KHz to 10KHz, RG = 600W
CT RIN GV1 GV1 GV2 EIN1 EIN2 SVR BW ASB ISB AM VOS VAM TON TOFF CDLK CDSAT CDTHD
Cross Talk Input Impedance Voltage Gain 1 Voltage Gain Match 1 Voltage Gain 2 Output Noise Voltage 1 Output Noise Voltage 2 Supply Voltage Rejection Power Bandwidth Stand-by Attenuation Stand-by Current Mute Attenuation Offset Voltage Min. Supply Voltage Threshold Turn on Delay Turn off Delay Clip Det High Leakage Current Clip Det Sat. Voltage Clip Det THD level
D0 (IB1) = 1
TURN ON DIAGNOSTICS 1 (Power Amplifier Mode) Pgnd Short to GND det. (below this limit, the Output is considered in Short Circuit to GND) Short to Vs det. (above this limit, the Output isconsidered in Short Power Amplifier in st-by Circuit to VS) Normal operation thresholds.(Within these limits, the Output is considered without faults). Vs -1.2 1.2 V
Pvs
V
Pnop
1.8
Vs -1.8
V
8/28
TDA7566 Table 3.
Electrical specifications Electrical characteristics (continued) (Refer to the test circuit, VS = 14.4V; RL = 4; f = 1KHz; GV = 26dB; Tamb = 25C; unless otherwise specified.)
Parameter Shorted Load det. Open Load det. Normal Load det. 85 1.65 45 Test Condition Min. Typ. Max. 0.5 Unit W W W
Symbol Lsc Lop Lnop
TURN ON DIAGNOSTICS 2 (Line Driver Mode) Pgnd Short to GND det. (below this limit, the Output is considered in Short Circuit to GND) Short to Vs det. (above this limit, the Output isconsidered in Short Power Amplifier in st-by Circuit to VS) Normal operation thresholds. (Within these limits, the Output is considered without faults). Shorted Load det. Open Load det. Normal Load det. 330 7 180 Vs -1.2 1.2 V
Pvs
V
Pnop Lsc Lop Lnop
1.8
Vs -1.8 2
V W W W
PERMANENT DIAGNOSTICS 2 (Power Amplifier Mode or Line Driver Mode) Pgnd Short to GND det. (below this limit, the Output is considered in Short Circuit to GND) Short to Vs det. (above this limit, the Output is considered in Short Circuit to VS) Normal operation thresholds.(Within these limits, the Output is considered without faults). Power Amplifier mode LSC VO INL IOL Shorter Load det. Line Driver mode Offset Detection Normal load current detection Open load current detection VO < (VS - 5)pk Power Amplifier in play, AC Input signals = 0 1.5 500 250 2 2 2.5 W V mA mA Power Amplifier in Mute or Play, one or more short circuits protection activated Vs -1.2 1.2 V
Pvs
V
Pnop
1.8
Vs -1.8
V
0.5
W
I2C BUS INTERFACE fSCL VIL VIH Clock Frequency Input Low Voltage Input High Voltage 2.3 400 1.5 KHz V V
9/28
Electrical specifications
TDA7566
3.4
Figure 4.
Electrical characteristics curves
Quiescent current vs. Supply voltage Figure 5. Output power vs. supply voltage (4)
250 230 210 190 170 150 130 110 90 70 50
Id (mA)
Po (W) 70 65
Vin = 0 NO LOADS
60 55 50 45 40 35 30 25 20 15 10 5 RL = 4 Ohm f = 1 KHz
Po-max
THD= 10 %
THD= 1 %
8
10
12 Vs (V)
14
16
18
8
9
10
11
12
13 Vs (V)
14
15
16
17
18
Figure 6.
Output power vs. supply voltage (2)
Figure 7.
Distortion vs. output power (4)
Po (W) 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 8
10
Po-max
THD (%)
RL = 2 Ohm f = 1 KHz THD= 10 %
Vs = 14.4 V RL = 4 Ohm 1
f = 10 KHz 0.1
THD= 1 %
f = 1 KHz
9
10
11
12 Vs (V)
13
14
15
16
0.01 0.1
1 Po (W)
10
Figure 8.
Distortion vs. output power (2)
Figure 9.
Distortion vs. frequency (4)
THD (%) 10
10
THD (%)
Vs = 14.4 V RL = 2 Ohm 1 f = 10 KHz 0.1 f = 1 KHz
0.1 1
Vs = 14.4 V RL = 4 Ohm Po = 4 W
0.01 0.1
1 Po (W)
10
0.01 10
100
f (Hz)
1000
10000
10/28
TDA7566
Electrical specifications
Figure 10. Distortion vs. frequency (2)
Figure 11. Crosstalk vs. frequency
THD (%) 10 Vs = 14.4 V RL = 2 Ohm Po = 8 W
CROSSTALK (dB) 90 80 70 60 50
1
0.1
Vs = 14.4 V RL = 4 Ohm Po = 4 W Rg = 600 Ohm
40 30
0.01 10
100 f (Hz)
1000
10000
20 10
100
f (Hz)
1000
10000
Figure 12. Supply voltage rejection vs. frequency
SVR (dB) 90 80 70 60 50 40 30 20 10 Rg = 600 Ohm Vripple = 1 Vpk
Figure 13. Power Dissipation & Efficiency vs. Output Power (4, SINE)
Ptot (W) 90 80 70 60 50 40 30 20 10 0 0 2 4 6 8 10 12 14 Po (W) 16 18 20 22 24 Ptot Vs = 14.4 V RL = 4x4 Ohm f= 1 KHz SINE n n (%) 90 80 70 60 50 40 30 20 10 0 26
100
f (Hz)
1000
10000
Figure 14. Power Dissipation vs. Average Ouput Figure 15. Power Dissipation vs. Average Ouput Power (Audio Program Simulation, 4) Power (Audio Program Simulation, 2)
Ptot (W) 45 40 35 30 25
40 90 80 Ptot (W)
Vs = 14.4 V RL = 4x4 Ohm GAUSSIAN NOISE
70
CLIP START
60 50
Vs = 14.4 V RL = 4x2 Ohm GAUSSIAN NOISE
CLIP START
20 15 10 5 0 1 2 Po (W) 3 4 5
30 20 10 0 0 1 2 3 4 Po (W) 5 6 7 8
11/28
Diagnostics functional description
TDA7566
4
4.1
Diagnostics functional description
Turn-on diagnostic
It is activated at the turn-on (stand-by out) under I2C bus request. Detectable output faults are: - - - - Short to gnd Short to VS Short across the speaker Open speaker
To verify if any of the above misconnections are in place, a subsonic (inaudible) current pulse (Figure 16) is internally generated, sent through the speaker(s) and sunk back.The Turn On diagnostic status is internally stored until a successive diagnostic pulse is requested (after a I2C reading). If the "stand-by out" and "diag. enable" commands are both given through a single programming step, the pulse takes place first (power stage still in stand-by mode, low, outputs = high impedance). Afterwards, when the Amplifier is biased, the PERMANENT diagnostic takes place. The previous Turn On state is kept until a short appears at the outputs. Figure 16. Turn - On diagnostic: working principle
Vs~5V Isource I (mA) Isource Isink
CH+ CHIsink
~100ms Measure time
t (ms)
Figure 17 and 18 show SVR and OUTPUT waveforms at the turn-on (stand-by out) with and without TURN-ON DIAGNOSTIC.
12/28
TDA7566
Diagnostics functional description Figure 17. SVR and Output behaviour (CASE 1: without turn-on diagnostic)
Vsvr Out
Permanent diagnostic acquisition time (100mS Typ)
Bias (power amp turn-on)
Diagnostic Enable (Permanent)
t
FAULT event
Permanent Diagnostics data (output) permitted time
Read Data
I2CB DATA
Figure 18. SVR and Output pin behaviour (CASE 2: with turn-on diagnostic)
Vsvr Out
Turn-on diagnostic acquisition time (100mS Typ) Permanent diagnostic acquisition time (100mS Typ)
Diagnostic Enable (Turn-on)
Turn-on Diagnostics data (output) permitted time
Diagnostic Enable (Permanent)
FAULT event
t
Bias (power amp turn-on) permitted time
Read Data
Permanent Diagnostics data (output) permitted time
I2CB DATA
The information related to the outputs status is read and memorized at the end of the current pulse top. The acquisition time is 100 ms (typ.). No audible noise is generated in the process. As for SHORT TO GND / Vs the fault-detection thresholds remain unchanged from 26 dB to 12 dB gain setting. They are as follows: Figure 19. Thresholds for SHORT TO GND/VS
S.C. to GND x Normal Operation x S.C. to Vs
0V
1.2V
1.8V
VS-1.8V
VS-1.2V
D01AU1253
VS
13/28
Diagnostics functional description
TDA7566
Concerning SHORT ACROSS THE SPEAKER / OPEN SPEAKER, the threshold varies from 26 dB to 12 dB gain setting, since different loads are expected (either normal speaker's impedance or high impedance). The values in case of 26 dB gain are as follows: Figure 20. Thresholds for SHORT ACROSS THE SPEAKER/OPEN SPEAKER
S.C. across Load x Normal Operation x Open Load
0V
0.5
1.75
45
85
D01AU1327
Infinite
If the Line-Driver mode (Gv= 12 dB and Line Driver Mode diagnostic = 1) is selected, the same thresholds will change as follows: Figure 21. Thresholds for Line-Drivers
S.C. across Load x Normal Operation x Open Load
0
2
7
180
330
D02AU1340
infinite
4.2
Permanent diagnostics
Detectable conventional faults are: - - - - - 1. SHORT TO GND SHORT TO Vs SHORT ACROSS THE SPEAKER OUTPUT OFFSET DETECTION AC DIAGNOSTIC
The following additional features are provided:
The TDA7566 has 2 operating statuses: RESTART mode. The diagnostic is not enabled. Each audio channel operates independently from each other. If any of the a.m. faults occurs, only the channel(s) interested is shut down. A check of the output status is made every 1 ms (Figure 22). Restart takes place when the overload is removed. DIAGNOSTIC mode. It is enabled via I2C bus and self activates if an output overload (such to cause the intervention of the short-circuit protection) occurs to the speakers outputs . Once activated, the diagnostics procedure develops as follows (Figure 23): - To avoid momentary re-circulation spikes from giving erroneous diagnostics, a check of the output status is made after 1ms: if normal situation (no overloads) is detected, the diagnostic is not performed and the channel returns back active. Instead, if an overload is detected during the check after 1 ms, then a diagnostic cycle having a duration of about 100 ms is started. After a diagnostic cycle, the audio channel interested by the fault is switched to RESTART mode. The relevant data are stored inside the device and can be read by the microprocessor. When one cycle has terminated, the next one is activated
2.
- -
14/28
TDA7566
Diagnostics functional description by an I2C reading. This is to ensure continuous diagnostics throughout the carradio operating time. - To check the status of the device a sampling system is needed. The timing is chosen at microprocessor level (over half a second is recommended).
Figure 22. Restart timing without Diagnostic Enable (Permanent) Each 1ms time, a sampling of the fault is done
Out
1-2mS 1mS 1mS 1mS 1mS
Overcurrent and short circuit protection intervention (i.e. short circuit to GND)
t
Short circuit removed
Figure 23. Restart timing with Diagnostic Enable (Permanent)
1mS 100mS 1mS 1mS
t
Overcurrent and short Short circuit removed (i.e. short circuit to GND)
4.3
Output DC offset detection
Any DC output offset exceeding 2V are signalled out. This inconvenient might occur as a consequence of initially defective or aged and worn-out input capacitors feeding a DC component to the inputs, so putting the speakers at risk of overheating. This diagnostic has to be performed with low-level output AC signal (or Vin = 0). The test is run with selectable time duration by microprocessor (from a "start" to a "stop" command): START = Last reading operation or setting IB1 - D5 - (OFFSET enable) to 1 STOP = Actual reading operation Excess offset is signalled out if persistent throughout the assigned testing time. This feature is disabled if any overloads leading to activation of the short-circuit protection occurs in the process.
4.4
AC diagnostic
It is targeted at detecting accidental disconnection of tweeters in 2-way speaker and, more in general, presence of capacitively (AC) coupled loads. This diagnostic is based on the notion that the overall speaker's impedance (woofer + parallel tweeter) will tend to increase towards high frequencies if the tweeter gets
15/28
Diagnostics functional description
TDA7566
disconnected, because the remaining speaker (woofer) would be out of its operating range (high impedance). The diagnostic decision is made according to peak output current thresholds, as follows: Iout > 500mApk = NORMAL STATUS Iout < 250mApk = OPEN TWEETER To correctly implement this feature, it is necessary to briefly provide a signal tone (with the amplifier in "play") whose frequency and magnitude are such to determine an output current higher than 500mApk in normal conditions and lower than 250mApk should the parallel tweeter be missing. The test has to last for a minimum number of 3 sine cycles starting from the activation of the AC diagnostic function IB2) up to the I2C reading of the results (measuring period). To confirm presence of tweeter, it is necessary to find at least 3 current pulses over 500mA over all the measuring period, else an "open tweeter" message will be issued. The frequency / magnitude setting of the test tone depends on the impedance characteristics of each specific speaker being used, with or without the tweeter connected (to be calculated case by case). High-frequency tones (> 10 KHz) or even ultrasonic signals are recommended for their negligible acoustic impact and also to maximize the impedance module's ratio between with tweeter-on and tweeter-off. Figure 24 shows the Load Impedance as a function of the peak output voltage and the relevant diagnostic fields. This feature is disabled if any overloads leading to activation of the short-circuit protection occurs in the process. Figure 24. Current detection: Load impedance magnitude |Z| Vs. output peak voltage of the sinus
Load |z| (Ohm)
50 Iout (peak) <250mA 30 20
Low current detection area (Open load) D5 = 1 of the DBx byres
Iout (peak) >500mA
10
5 3 2
High current detection area (Normal load) D5 = 0 of the DBx bytes
1
1
2
3
4
5
6
7
8
Vout (Peak)
4.5
Multiple faults
When more misconnections are simultaneously in place at the audio outputs, it is guaranteed that at least one of them is initially read out. The others are notified after successive cycles of I2C reading and faults removal, provided that the diagnostic is enabled. This is true for both kinds of diagnostic (Turn on and Permanent).
16/28
TDA7566
Diagnostics functional description The table below shows all the couples of double-fault possible. It should be taken into account that a short circuit with the 4 ohm speaker unconnected is considered as double fault. Table 4. Double Fault Table for Turn On Diagnostic
S. GND (so) S. GND (so) S. GND (sk) S. Vs S. Across L. Open L. S. GND / / / / S. GND (sk) S. GND S. GND / / / S. Vs S. Vs + S. GND S. Vs S. Vs / / S. Across L. S. GND S. GND S. Vs S. Across L. / Open L. S. GND Open L. (*) S. Vs N.A. Open L. (*)
S. GND (so) / S. GND (sk) in the above table make a distinction according to which of the 2 outputs is shorted to ground (test-current source side= so, test-current sink side = sk). More precisely, in channels LF and LR, so = CH+, sk = CH-; in channels LR and RF, so = CH-, SK = CH+. In Permanent Diagnostic the table is the same, with only a difference concerning Open Load (*), which is not among the recognisable faults. Should an Open Load be present during the device's normal working, it would be detected at a subsequent Turn on Diagnostic cycle (i.e. at the successive Car Radio Turn on).
4.6
Faults availability
All the results coming from I2Cbus, by read operations, are the consequence of measurements inside a defined period of time. If the fault is stable throughout the whole period, it will be sent out. This is true for DC diagnostic (Turn on and Permanent), for Offset Detector, for AC Diagnostic (the low current sensor needs to be stable to confirm the Open tweeter). To guarantee always resident functions, every kind of diagnostic cycles (Turn on, Permanent, Offset, AC) will be reactivate after any I2C reading operation. So, when the micro reads the I2C, a new cycle will be able to start, but the read data will come from the previous diag. cycle (i.e. The device is in Turn On state, with a short to Gnd, then the short is removed and micro reads I2C. The short to Gnd is still present in bytes, because it is the result of the previous cycle. If another I2C reading operation occurs, the bytes do not show the short). In general to observe a change in Diagnostic bytes, two I2C reading operations are necessary.
4.7
I2C Programming/reading sequence
A correct turn on/off sequence respectful of the diagnostic timings and producing no audible noises could be as follows (after battery connection): TURN-ON: (STAND-BY OUT + DIAG ENABLE) --- 500 ms (min) --- MUTING OUT TURN-OFF: MUTING IN --- 20 ms --- (DIAG DISABLE + STAND-BY IN)
17/28
Diagnostics functional description
TDA7566
Car Radio Installation: DIAG ENABLE (write) --- 200 ms --- I2C read (repeat until All faults disappear). AC TEST: FEED H.F. TONE -- AC DIAG ENABLE (write) --- WAIT > 3 CYCLES --- I2C read (repeat I2C reading until tweeter-off message disappears). OFFSET TEST: Device in Play (no signal) -- OFFSET ENABLE - 30ms - I2C reading (repeat I2C reading until high-offset message disappears).
18/28
TDA7566
I2C Bus interface
5
I2C Bus interface
Data transmission from microprocessor to the TDA7566 and viceversa takes place through the 2 wires I2C BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected).
5.1
Data Validity
As shown by Figure 25, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.
5.2
Start and Stop Conditions
As shown by Figure 26 a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.
5.3
Byte Format
Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first.
5.4
Acknowledge
The transmitter* puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see Figure 27). The receiver** the acknowledges has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so that the SDAline is stable LOW during this clock pulse. * Transmitter - - - - master (P) when it writes an address to the TDA7566 slave (TDA7566) when the P reads a data byte from TDA7566 slave (TDA7566) when the P writes an address to the TDA7566 master (P) when it reads a data byte from TDA7566
** Receiver
Figure 25. Data Validity on the I2C BUS
SDA
SCL DATA LINE STABLE, DATA VALID CHANGE DATA ALLOWED
D99AU1031
19/28
I2C Bus interface Figure 26. Timing diagram on the I2C Bus
SCL I2CBUS SDA
D99AU1032
TDA7566
START
STOP
Figure 27. Timing acknowledge clock pulse
SCL 1 2 3 7 8 9
SDA MSB START
D99AU1033
ACKNOWLEDGMENT FROM RECEIVER
20/28
TDA7566
Software specifications
6
Software specifications
All the functions of the TDA7566 are activated by I2C interface. The bit 0 of the "ADDRESS BYTE" defines if the next bytes are write instruction (from P to TDA7566) or read instruction (from TDA7566 to P). Table 5.
D7 1 1 0 1 1 0 0
Chip Address:
D0 X D8 Hex
X = 0 Write to device X = 1 Read from device If R/W = 0, the P sends 2 "Instruction Bytes": IB1 and IB2. Table 6.
D7 D6 D5
IB1
0 Diagnostic enable (D6 = 1) Diagnostic defeat (D6 = 0) Offset Detection enable (D5 = 1) Offset Detection defeat (D5 = 0) Front Channel Gain = 26dB (D4 = 0) Gain = 12dB (D4 = 1) Rear Channel Gain = 26dB (D3 = 0) Gain = 12dB (D3 = 1) Mute front channels (D2 = 0) Unmute front channels (D2 = 1) Mute rear channels (D1 = 0) Unmute rear channels (D1 = 1) CD 2% (D0 = 0) CD 10% (D0 = 1)
D4
D3
D2 D1 D0
Table 7.
D7 D6 D5 D4 D3
IB2
0 0 0 Stand-by on - Amplifier not working - (D4 = 0) Stand-by off - Amplifier working - (D4 = 1) Power amplifier mode diagnostic (D3 = 0) Line driver mode diagnostic (D3 = 1)
21/28
Software specifications Table 7.
D2 D1 D0
TDA7566 IB2 (continued)
Current detection diagnostic enabled (D2 = 1) Current detection diagnostic defeat (D2 = 0) 0 0
If R/W = 1, the TDA7566 sends 4 "Diagnostics Bytes" to mP: DB1, DB2, DB3 and DB4. Table 8.
D7 D6
DB1
Thermal warning active (D7 = 1) Diag. cycle not activated or not terminated (D6 = 0) Diag. cycle terminated (D6 = 1) Channel LF current detection Output peak current < 250mA - Open load (D5 = 1) Output peak current > 500mA - Open load (D5 = 0) Channel LF Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1) Channel LF Normal load (D3 = 0) Short load (D3 = 1) Channel LF Turn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Offset diag.: No output offset (D2 = 0) Output offset detection (D2 = 1) Channel LF No short to Vcc (D1 = 0) Short to Vcc (D1 = 1) Channel LF No short to GND (D1 = 0) Short to GND (D1 = 1)
D5
D4
D3
D2
D1
D0
Table 9.
D7 D6
DB2
Offset detection not activated (D7 = 0) Offset detection activated (D7 = 1) Current sensor not activated (D6 = 0) Current sensor activated (D6 = 1) Channel LR current detection Output peak current < 250mA - Open load (D5 = 1) Output peak current > 500mA - Open load (D5 = 0)
D5
22/28
TDA7566 Table 9.
D4
Software specifications DB2 (continued)
Channel LR Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1) Channel LR Normal load (D3 = 0) Short load (D3 = 1) Channel LR Turn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Permanent diag.: No output offset (D2 = 0) Output offset detection (D2 = 1) Channel LR No short to Vcc (D1 = 0) Short to Vcc (D1 = 1) Channel LR No short to GND (D1 = 0) Short to GND (D1 = 1)
D3
D2
D1
D0
Table 10.
D7 D6
DB3
Stand-by status (= IB1 - D4) Diagnostic status (= IB1 - D6) Channel RF current detection Output peak current < 250mA - Open load (D5 = 1) Output peak current > 500mA - Open load (D5 = 0) Channel RF Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1) Channel RF Normal load (D3 = 0) Short load (D3 = 1) Channel RF Turn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Permanent diag.: No output offset (D2 = 0) Output offset detection (D2 = 1) Channel RF No short to Vcc (D1 = 0) Short to Vcc (D1 = 1) Channel RF No short to GND (D1 = 0) Short to GND (D1 = 1)
D5
D4
D3
D2
D1
D0
23/28
Software specifications Table 11.
D7 D6
TDA7566 DB4
X X Channel R Rcurrent detection Output peak current < 250mA - Open load (D5 = 1) Output peak current > 500mA - Open load (D5 = 0) Channel RR Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1) Channel RR Normal load (D3 = 0) Short load (D3 = 1) Channel RR Turn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Permanent diag.: No output offset (D2 = 0) Output offset detection (D2 = 1) Channel RR No short to Vcc (D1 = 0) Short to Vcc (D1 = 1) Channel RR No short to GND (D1 = 0) Short to GND (D1 = 1)
D5
D4
D3
D2
D1
D0
24/28
TDA7566
Examples of bytes sequence
7
Examples of bytes sequence
1 - Turn-On diagnostic - Write operation
Start Address byte with D0 = 0 ACK IB1 with D6 = 1 ACK IB2 ACK STOP
2 - Turn-On diagnostic - Read operation
Start Address byte with D0 = 1 ACK DB1 ACK DB2 ACK DB3 ACK DB4 ACK STOP
The delay from 1 to 2 can be selected by software, starting from 1ms 3a - Turn-On of the power amplifier with 26dB gain, mute on, diagnostic defeat.
Start Address byte with D0 = 0 ACK IB1 X000000X ACK IB2 XXX1X0XX ACK STOP
3b - Turn-Off of the power amplifier
Start Address byte with D0 = 0 ACK IB1 X0XXXXXX ACK IB2 XXX0XXXX ACK STOP
4 - Offset detection procedure enable
Start Address byte with D0 = 0 ACK IB1 XX1XX11X ACK IB2 XXX1X0XX ACK STOP
5 - Offset detection procedure stop and reading operation (the results are valid only for the offset detection bits (D2 of the bytes DB1, DB2, DB3, DB4).
Start

Address byte with D0 = 1
ACK
DB1
ACK
DB2
ACK
DB3
ACK
DB4
ACK
STOP
The purpose of this test is to check if a D.C. offset (2V typ.) is present on the outputs, produced by input capacitor with anomalous leackage current or humidity between pins. The delay from 4 to 5 can be selected by software, starting from 1ms
6 - Current detection procedure start (the AC inputs must be with a proper signal that depends on the type of load)
Start Address byte with D0 = 0 ACK IB1 XX01111X ACK IB2 XXX1X1XX ACK STOP
7 - Current detection reading operation (the results valid only for the current sensor detection bits - D5 of the bytes DB1, DB2, DB3, DB4).
Start
Address byte with D0 = 1
ACK
DB1
ACK
DB2
ACK
DB3
ACK
DB4
ACK
STOP
During the test, a sinus wave with a proper amplitude and frequency (depending on the loudspeaker under test) must be present. The minimum number of periods that are needed to detect a normal load is 5. The delay from 6 to 7 can be selected by software, starting from 1ms.
25/28
Package informations
TDA7566
8
Package informations
In order to meet environmental requirements, ST offers this device in ECOPACK(R) packages. This package have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. Figure 28. Flexiwatt25 Mechanical Data & Package Dimensions
DIM. A B C D E F (1) G G1 H (2) H1 H2 H3 L (2) L1 L2 (2) L3 L4 L5 M M1 N O R R1 R2 R3 R4 V V1 V2 V3 MIN. 4.45 1.80 0.75 0.37 0.80 23.75 28.90 mm TYP. 4.50 1.90 1.40 0.90 0.39 1.00 24.00 29.23 17.00 12.80 0.80 22.47 18.97 15.70 7.85 5 3.5 4.00 4.00 2.20 2 1.70 0.5 0.3 1.25 0.50 MAX. 4.65 2.00 1.05 0.42 0.57 1.20 24.25 29.30 MIN. 0.175 0.070 0.029 0.014 0.031 0.935 1.139 inch TYP. 0.177 0.074 0.055 0.035 0.015 0.040 0.945 1.150 0.669 0.503 0.031 0.884 0.747 0.618 0.309 0.197 0.138 0.157 0.157 0.086 0.079 0.067 0.02 0.12 0.049 0.019 MAX. 0.183 0.079 0.041 0.016 0.022 0.047 0.955 1.153
OUTLINE AND MECHANICAL DATA
22.07 18.57 15.50 7.70
22.87 19.37 15.90 7.95
0.869 0.731 0.610 0.303
0.904 0.762 0.626 0.313
3.70 3.60
4.30 4.40
0.145 0.142
0.169 0.173
5 (T p.) 3 (Typ.) 20 (Typ.) 45 (Typ.)
Flexiwatt25 (vertical)
(1): dam-bar protusion not included (2): molding protusion included
V C B V V3 H3 H H1 H2 R3 R4 V1 R2 R L L1 A
L4
O
L2
N
L3
V1
V2
R2 L5 G G1 F
FLEX25ME
R1 R1 R1 E M M1
D
Pin 1
7034862
26/28
TDA7566
Revision history
9
Revision history
Table 12.
Date 20-Sep-2003 12-Jul-2006 18-Dec-2006
Document revision history
Revision 1 2 3 Initial release. Changed the layout graphic in the new corporate one. Corrected the values of INL and IOL parameters in the Table 3 on page 9/28. Updated Figure 20 and 21. Changes
27/28
TDA7566
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
(c) 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
28/28


▲Up To Search▲   

 
Price & Availability of TDA756606

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X